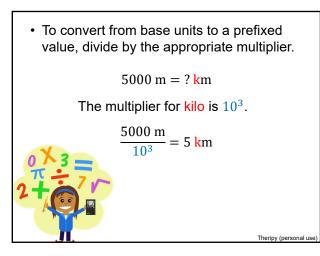
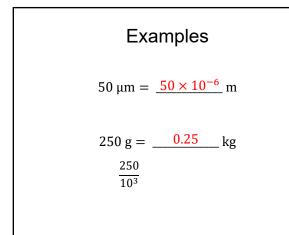


Units

• The measurements of physical quantities are expressed in terms of units.

Physical Quantity	Units
time	second (s)
mass	kilogram (kg)
distance	meter (m)
volume	liter (L)
speed	meters/second (m/s)
temperature	Celsius (°C)


Converting Units


- Calculations are done using base units.
- To convert to base units, multiply the value by the appropriate multiplier.

2 **n**m = ? m

The multiplier for nano is 10^9 .

 $2 \text{ nm} = 2 \times 10^{-9} \text{ m}$

Scientific Notion

- Many measurements we encounter are values that are easily understood and manipulated.
 - Volume of a soda can = 355 mL
 - Distance from Winnipeg to Toronto = 2000 km

- But there also are extreme values.
 - Width of a human hair = 0.00005 m
 - Radius of an electron = 0.0000000000047 m

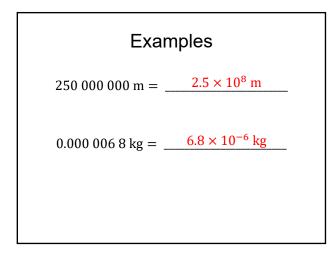
Hair – Martn (Adobe Stock Photo) Atom – adimas (Adobe Stock Photo) Sun – Wikilmages (pixabay)

- A shorthand method of writing very small and very large numbers is called scientific notation, in which we express numbers in terms of exponents of 10.
- Scientific notation follows the general format $a \times 10^n$. Where *a* is a decimal number and *n* is an integer.
 - 1.67×10^{-27}
 - 5.97×10^{24}

- To write a number in scientific notation, move the decimal point to the right of the first digit in the number.
- Count the number of places that you moved the decimal point.
- The number of places moves is the exponent.

©Laura Strickland – MyCuteGraphics.com (used with permission)

• For large numbers, the decimal moves to the left and the exponent will be positive.

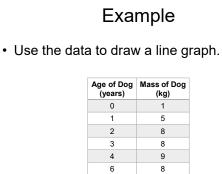

123,000,000,000

 1.23×10^{11}

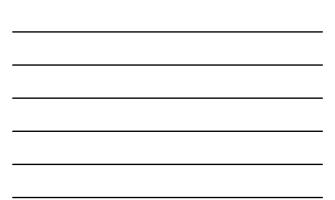
• For small numbers, the decimal moves to the right and exponent will be negative.

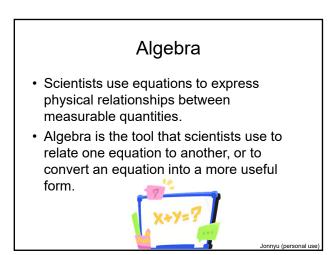
0.000.000.001.23


 1.23×10^{-9}


Graphing

- Making a graph helps you see how two factors called variables are related.
- A line graph has a horizontal x-axis and a vertical y-axis.





- Create an appropriate title and axis labels.
- Place the independent variable (the one that we change) on the x-axis.
- Place the dependent variable (the one that we are measuring) on the y-axis.
- Create a reasonable scale for each axis.
- Plot the points and connect them with straight lines.

 To solve an algebraic equation, we need to "undo" the operations and isolate the variable. 	
x + 3 = 5	x - 2 = 6
To undo the addition, we need to subtract	To undo the subtraction, we need to add
3 from both sides of the equation.	2 from both sides of the equation.
x + 3 - 3 = 5 - 3 $x = 2$	x - 2 + 2 = 6 + 2 $x = 8$
2x = 8	$\frac{x}{3} = 4$
To undo the multiplication, we need to	To undo the division, we need to multiply
divide 2 from both sides of the equation.	3 from both sides of the equation.
$\frac{2x}{\frac{2}{2}} = \frac{8}{\frac{2}{2}}$ $x = 4$	$3 \times \frac{x}{3} = 4 \times 3$ $x = 12$

 Some equations take to solve. 	e more than one step
2x + 3 = 7 Subtract 3 from both sides. 2x + 3 - 3 = 7 - 3 2x = 4 Divide both sides by 2. $\frac{2x}{2} = \frac{4}{2}$ x = 2	$\frac{x-4}{3} = 1$ Multiply both sides by 3 $3\frac{x-4}{3} = 1 \times 3$ $x-4 = 3$ Add 4 to both sides. x-4+4 = 3+4 $x = 7$

$$\frac{6}{x} = 3$$
Multiply both sides by x
$$x \frac{6}{x} = 3x$$

$$6 = 3x$$
Divide both sides by 3.
$$\frac{6}{3} = \frac{3x}{3}$$

$$2 = x$$

$$x = 2$$

